Discover The ‘Limitless Energy’ Breakthrough Backed By Titans

by | Jul 27, 2024 | Markets

For a moment, imagine a world of limitless energy – where there’s so much energy produced that everyone, everywhere, can power their homes, apartments, and offices at all hours of the day, with just pennies. 

These days, it’s tough to imagine a world like that. Last winter, for example, the average U.S. heating bill exceeded $1,000. 

But thanks to a potentially world-changing scientific breakthrough, the ostensibly utopian world of limitless energy could soon become a reality.  

Prescient investors stand to make fortunes in this limitless energy breakthrough.

That’s why both Microsoft (MSFT) – the world’s second most valuable company – and ChatGPT’s creator Sam Altman are both betting big on this very breakthrough right now. 

In fact, Microsoft recently announced a huge deal to start buying a ton of this limitless energy as soon as 2028.  

Interested? You should be… 

We’re talking about arguably the biggest scientific breakthrough of our lifetimes, and maybe the biggest investment opportunity of our lifetimes, too. 

Believe it or not, it all has to do with nuclear power

The Power of the Sun

Nuclear power has a bad reputation – and I get it. 

It has been used to create bombs that have destroyed whole cities. And when the world tried to capture that energy in a nuclear power plant, some of those plants had catastrophic explosions. Not once. Not twice. But time and time again.  

The nuclear power of the past deserves its bad rap. 

But not all nuclear power is created equal. 

Specifically, there are two types: nuclear fusion and nuclear fission

Everything the world has done to-date with nuclear power has been in the realm of nuclear fission, which involves splitting apart atoms, then capturing and using the energy produced as a result. 

This process can be risky for two reasons. 

First, when you split atoms, you create chain reactions that must be very carefully controlled – else they could cause meltdowns and explosions. Second, fission produces radioactive waste, which needs to be carefully stored so as to avoid contaminating the surrounding environment. 

Clearly, nuclear fission is dangerous stuff. 

But nuclear fusion is not. 

The Difference Between Fusion and Fission

While nuclear fission revolves around splitting atoms, nuclear fusion is all about combining them. 

Fission vs. Fusion: What's the Difference? - YouTube

Specifically, nuclear fusion is a process in which atomic nuclei combine to form a heavier nucleus, releasing a large amount of energy in the process. This energy is released in the form of light and heat. 

Importantly, nuclear fusion does not depend on any chain reactions and does not produce any radioactive waste. It is entirely stable without any negative byproducts. 

It’s the clean and safe version of nuclear fission. 

More than that, though, nuclear fusion is simply the better version of nuclear fission. That’s because it produces infinitely more energy. 

Nuclear Fusion’s Promising Potential

Consider this: Our sun is powered by nuclear fusion. At the sun’s core, temperatures reach up to 27 million degrees Fahrenheit, which is hot enough to allow nuclear fusion to take place. Under these extreme conditions, hydrogen atoms are forced together, forming helium and releasing a tremendous amount of energy in the process. This energy is so powerful that it travels to the surface of the sun, where it then travels another 93 million miles to warm up and light the Earth. 

Nuclear fusion is powerful stuff. 

Just a few pounds of hydrogen inputted into a nuclear fusion reaction will produce as much energy as burning thousands of pounds of coal or oil. Theoretically, a small cup of hydrogen fuel could power a house for hundreds of years. Extending that thinking out, a few nuclear fusion reactors could power the entire world for hundreds upon hundreds of years. 

And that’s why we believe nuclear fusion is the key to creating limitless energy.

But if so, then why are there dozens of nuclear fission reactors in the world, yet zero nuclear fusion reactors?

Because while nuclear fission is a risky science, nuclear fusion is a tough one – so much so that no one has figured out how to make a viable nuclear fusion reactor. 

Until just a few years ago… 

A Critical Energy Breakthrough

The challenge of nuclear fusion, in short, boils down to something called “net energy gain.” 

Net energy gain can be defined by the difference between the energy consumed by a production process and the energy produced by that same process. It is energy output minus energy input. 

Obviously, you need net energy gain for an energy source to be positive and, therefore, viable. A negative net energy gain means the energy source consumes more energy than it produces. 

Nuclear fusion has historically suffered from a negative net energy gain. 

That’s because the conditions under which nuclear fusion is possible are extremely energy intensive. 

Think of it this way: The only places in the universe where nuclear fusion happens naturally are in the cores of stars, which contain incredibly unique conditions. Namely, they are unimaginably hot. The sun’s core, for example, runs at around 27 million degrees Fahrenheit. Those extremely hot temperatures are what sparks nuclear fusion.  

Therefore, in order for scientists to replicate nuclear fusion on Earth, they need to create a reactor that gets really, really, really hot – and stays really, really, really hot. And that requires a lot of energy.

Historically speaking, the math hasn’t worked out to make nuclear fusion viable. Every nuclear fusion experiment to-date has resulted in a negative net energy gain… 

Until December 2022, that is. 

Achieving the Impossible

Physicists at Lawrence Livermore National Laboratory in California announced that they had created the world’s first nuclear fusion project with a positive net energy gain. 

And just last summer, those scientists repeated that experiment… with even better results!

That’s a huge deal. The one obstacle that has kept nuclear fusion from becoming a viable reality – and one that scientists had expected to remain unsolved for decades – has just been removed. With that, the Livermore project has set in motion a multi-decade trend of nuclear fusion technology reshaping the world’s energy system. We now have clear visibility to the world being powered by nothing more than a few nuclear fusion reactors by 2040.

Forget oil, gas, windmills and giant solar farms. In the future, all we may need to power the entire world is a few nuclear fusion reactors. 

Needless to say, the operators of those reactors could be the world’s most valuable companies. Their stocks could be the market’s biggest winners. 

And the time to invest in the Nuclear Fusion Revolution is now. 

The Final Word on Nuclear Energy

I like to stay on the cutting edge of world-changing technological developments because that’s where all the big money is made on Wall Street – taking big and bold stakes in early stage companies pioneering breakthrough technologies.

Right now, I’m foaming-at-the-mouth bullish on nuclear fusion technology. 

Nuclear fusion is the mysterious ‘limitless energy’ source that will solve the world’s energy needs. Technical challenges have held it back for decades. But for the first time, those technical challenges are being overcome as we speak. 

The result? A nuclear fusion boom over the next decade, wherein nuclear fusion reactors reshape the world’s energy landscape. 

I’m not the only one taking notice. 

Just last summer, Microsoft inked what is believed to be the first-ever commercial nuclear fusion deal, wherein it will purchase nuclear fusion electricity from startup Helion Energy by 2028.

The agreement specifically states that Helion will produce electricity through fusion by 2028 and target power generation for Microsoft of at least 50 megawatts after a year or pay financial penalties. 

This is a huge deal! Clearly, Microsoft – one of the world’s smartest companies – believes that nuclear fusion is just years away from being a viable reality. “We wouldn’t enter into this agreement if we were not optimistic that engineering advances are gaining momentum,” said Microsoft President Brad Smith. 

Oh, and the startup that Microsoft is buying nuclear fusion energy from – Helion Energy – is backed by Sam Altman, the CEO of OpenAI, which made the ChatGPT AI chatbot that everyone is buzzing about these days. 

Folks, the smart money has spoken. The limitless energy revolution has arrived, and the time to claim your stake in this wealth-generating phenomenon is now.

On the date of publication, Luke Lango did not have (either directly or indirectly) any positions in the securities mentioned in this article.

P.S. You can stay up to speed with Luke’s latest market analysis by reading our Daily Notes! Check out the latest issue on your Innovation Investor or Early Stage Investor subscriber site.

More From InvestorPlace

[sponsor]

Sponsored Content